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 Abstract:  
Artificial Intelligence (AI) plays a crucial role in cultural heritage by enabling the analysis, 

preservation, and restoration of artifacts and historical documents. Most of these applications 

may require to be used on devices with limited resources which leads to the need to use 

lightweight models. This study employs lightweight deep learning models, MobileNet V3 and 

ResNet-50, to classify Egyptian artifacts based on seven different materials. The models are 

trained on a dataset of 10.274 images. MobileNet achieves a training accuracy of 99.6% and 

a validation accuracy of 78.75%, while ResNet-50 achieves 96.62% and 83.23%, respectively. 

This research represents a novel contribution as previous studies have not specifically add-

ressed the classification of materials in Egyptian artifacts. Such advancements highlight AI's 

potential in making cultural heritage more accessible and enhancing historical under-sta-

nding.  

1. Introduction 
Cultural heritage is about the things that were developed, sur-

vived, and passed throughout different generations and eras 

[1]. The tangible and intangible cultural heritage are considered 

the main descriptions of the existing cultural heritage [2]. The 

tangible forms include artistic items, artifacts, paintings, obj-

ects, statues, and buildings. At the same time, the intangible 

forms can be recognized as the practices, languages, expres-
sions, values, traditions, and rituals [2, 3]. In other words, the 

tangible forms can be expressed as the remaining physical items 

while the intangible forms are perceivings acquired through 

oral expressions, storytelling, clothing, religious thoughts, and 

ceremonies [2]. Preserving and studying cultural heritage have 

a significant impact on civilization and technology by reviving 

the connection to certain values, beliefs, and concepts. Due 

to the rapid development of digital technologies, there has been 

an increasing opportunity of expanding the effect of techn-

ology over preserving the cultural heritage and making them 

more accessible [4, 5]. The tangible items or objects can be 

converted using technology to a digitalized form which exp-

ands their availability and preserves them from various factors 

like stealing and wearing out. However, only preservation 

is insufficient where the recognition task is a necessity to 

identify and demonstrate the historical part that tells the 

story and its relevance. Despite that the existing archaeologists, 

museums, and libraries all over the world play a key role in 

conserving and promoting the tangible cultural heritage, arti- 
ficial intelligence (AI) initiatives got impressive attention 
recently [5-8]. The reason behind that is the desire to maximize 
recognition automation with less human interference and 
higher accuracies. In the field of machine learning, material 
recognition is considerably an active research topic. Materials 
can be recognized and classified according to color, texture, 
and transparency degree. Despite that these features seem to be 
easily recognizable, implementing and training an appropriate 
material classifier is challenging due to the different lighting 
conditions that can affect the proprieties mentioned earlier. A 
specific research gap is related to the classification of materials 
of Egyptian artifacts. This aspect is further underscored by the 
absence of any or minimal studies, indicating the importance 
of our research. This is why this study has been devised to help 
further improve the identification and conservation of Egyptian 
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artifacts, with the help of highly advanced tech solutions such 
as AI. We hope that creating state-of-the-art material classifiers 
allows for more accurate and faster identification of artifacts, 
thus expanding the scope of cultural heritage preservation. 
Material culture is one of the main aspects regarding the 
objects of cultural heritage. Materials can reveal information 
about the era, location, usage, development, and consumption. 
Also, by identifying the material of the historical items, import-

ant interpretations can be done regarding anthropology, weather, 
and evolution [9]. Since the dawn of mankind, materials shaped 
civilization so that the ancient period of time has been defined 
by the predominantly used material, i.e., Stone Age, Bronze 
Age, Iron Age, which shows the important impact of the mat-
erials [10]. Ancient Egypt is considered one of the world’s first 
settlements where a wide range of materials were abundantly 
available. This helped the ancient Egyptians to master a variety 
of techniques for material handling. Three different cultures 
prospered during the Predynastic period in Egypt: the Fayum, 
the Badarian, and the Naqada cultures as shown in fig. (1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (1) map of predynastic sites in Egypt [11]. 
 

Each demonstrated significant advancements in material 
handling to support settlement. The Fayum culture (9000-4400 
BCE) flourished during the Palaeolithic age as early Egyptians 
settled near Fayum Lake, utilizing abundant water resources 
for pottery and clay [12]. These materials were utilized in making 
up essential items like pots, cups, and cookware. The Badarian 
culture (4400-4000 BCE) emerged in Al-Badari, upper Egypt, 
focusing on agriculture and spreading widely, which led to 
diverse heritage items including pottery, wooden linings, pan-
eling, coffins, and ivory tableware and bangles [13,14]. The 
Naqada culture (4000-3000 BCE) along the Nile valley saw 
sustainable urban and economic growth through advanced 
agriculture, hunting, and trading, with innovations in pottery, 
functional tools, mud-brick buildings, and the use of copper, 
gold, silver, and faience for various purposes [15]. The Egyptian 
civilization became highly developed in many areas of the 
arts and crafts over its long history [16]. So here is a list of 
some of the materials used in different categories. *) Stone-
working: Ancient Egyptians used limestone, sandstone, grey-

wacke, calcite, schist, diorite, granodiorite, granite, basalt, and 

quartzite for statues, temples, and other structures, employing 
copper saws and drills with abrasive sand, and dolerite 
hammer stones, as evidenced by the unfinished obelisk in 
Aswan, fig. (2-a)  [17]. *) Pigments and paints: Egyptian 
pigments, derived from minerals such as gypsum for white, 
carbon for black, and ochre for reds and yellows, were likely 
applied using egg tempera, gums, and resins, as illustrated 
by ancient color palettes, fig. (2-b) and paintings, fig. (2-c) 
[17]. *) Woodworking: Due to the knots and irregular graining 
of local woods like tamarisk, acacia, and sycamore, Egyptians 
imported conifer wood from Lebanon and Syria for larger 
projects, as demonstrated by ancient woodwork, fig. (2-d) and 
woodworking tools, fig. (2-e) [17]. *) Jewelry and metalw-

orking: Egyptians created vases, amulets, and statues using 
steatite and faience, and often used gold and silver in religious 
artifacts, with gold seen in items like Tutankhamun’s funerary 
mask, fig. (2-f), symbolizing the flesh of gods, and silver repr-
esenting their bones, as shown by ancient accessories, fig. 
(2-g) [17].  
 

                   a                                       b                                     c  
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Figure (2) a. unfinished obelisk Aswan Quarries [18], b. ancient Egyptian 

paintings [19], c. an ancient Egyptian color palette [20], d. an 

ancient Egyptian woodwork [21], e. ancient Egyptian wood-

working tools [22], f. Tutankhamun’s funerary mask [23], g. 

ancient Egyptian accessories [24] 
 

Accordingly, we aim to implement and develop a material 
classifier with adequate complexity and sufficient recognition 
accuracy. The adequate complexity will allow the usage in real-
time applications and portable devices with limited compu-
tational capacity. In this work, MobileNet-V3 and ResNet-
50, which are light-weight architectures, are chosen to be 
trained on classifying items of ancient Egypt including items 
from the prehistoric period according to seven materials, and 
the main contribution points can be summarized into: Clas-
sifying the tangible items of cultural heritage according to their 
materials. Employing MobileNet-V3 and ResNet-50 architectures 
in the context of Egyptian cultural heritage classification. The 
remaining parts are organized as follows. The literature review 
is presented in section 2. The methodology and implementation 

details are addressed in section 3, which includes the backg-
round in section 3.1, the proposed models in section 3.2, models 
training in section 3.2.3, and the dataset in section 3.2.4. In 
section 4, evaluation criteria are presented, and the results are 

discussed, including MobileNet V3 training results in section 

4.1 and ResNet training results in section 4.2. Finally, the 
conclusion is summarized in Section 5. 
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2. Related Work 
Classifying the items of cultural heritage helps in preserving, 

studying, and interpreting them. Accordingly, there has been 

an increasing interest in developing machine learning models 

for classifying these items in their digitalized form. Many 

cultural heritage classification techniques based on deep 

learning and traditional machine learning approaches were 

previously developed and tested [25]. However, we are going 

to address in this section the studies that adopted deep learning 

classification techniques which are related to our work where 

the deep neural networks (DNNs) have proven their efficiency. 

Authors in [6] were interested in classifying images of buildings 

with architectural heritage value. Two convolutional neural 

networks (CNNs): Inception V3 [26] and AlexNet [27] were 

adopted beside other two residual networks: ResNet [28] and 

Inception-ResNet-v2 [29]. A new dataset of around 10,000 

images was compiled in their study and divided into 10 dif-

ferent types of architectural cultural heritage. The conducted 

experiments involved evaluating the utility of training these 

networks from scratch versus only fine-tuning pre-trained ver-
sions of them. ResNet yielded the best performance in terms of 

full training while Inception-ResNet-v2 showed outstanding 
classification in terms of fine-tuning. In [30], the paper presented 
famous Indian monuments classification based on the Inception 

V3 model. The authors utilized a dataset generated using a web 

crawler where it contained 2600 images. After retraining the 

last layer of the adopted architecture and then testing the 

performance on 20 images, the model achieved outstanding 
accuracy. Moreover, authors in [31] showed interest in the Indian 

monuments where they introduced a framework of crafted 

features and deep convolutional neural network architecture 

for classification. The experiments were carried out on a 

manually acquired dataset, where 100 different monuments 

were considered for classification. Classification among three 

different architectural styles of buildings of the Mexican 

cultural heritage was done in [32]. The used cultural heritage 

images were extracted as frames from raw video content. 

Due to the different view perspectives that the frames came 

with, a saliency-driven approach was done before training two 
convolutional neural network (CNN) architectures, GoogLeNet 

and AlexNet on the classification task. The experimental 

results elaborated that this visual attention approach increased 

data quality, and hence, better classification results were obt-

ained. In [33], authors investigated the performance of DNNs 

on different art classification problems. Due to the lack of 

available training data, two transfer learning approaches: off-

the-shelf and fine-tuning, were followed throughout their study. 

Four pre-trained architectures: VGG19 [34], Inception-V3, 

Xception [35] and ResNet50 [36] were experimented while 

two datasets based on different heritage collections were 

utilized. The results showed that the finetuning approach out-

performed the off-the-shelf one, nevertheless, the latter was 

effective in material and artwork classifications. Different 

formats of digitalized items from Indonesian cultural heritage 

were classified using DNNs in [37]. CNN and recurrent neural 

network (RNN) techniques were utilized for classification, 

where CNN was used with images, audio, and videos while 

RNN was with texts. The dataset included 100 files in each 
format divided into five categories. RNN showed high perfor-

mance during testing on text data, while CNN achieved reliable 

accuracy except for audio classification. Furthermore, in [7], 
weathering type recognition and classification were introduced 

for items of cultural heritage. The images used were obtained 
from eleven different structures and divided into nine cate-

gories. In order to classify between these categories, artificial 

neural network (ANN) and CNN methods were implemented. 

The results showed that CNN outperformed ANN by achieving 

a faster and more accurate classification performance. Also, 

another DNN was applied in [38] to classify images of arch-

itectural heritage belonging to ten different categories. 

 

3. Methodology 
In this section, MobileNet and ResNet-50 are discussed, 

followed by our model and the dataset used. Applying image 
classification on the smartphone requires a lightweight algor -

ithm. MobileNet and ResNet are lightweight Convolution Neural 

Network which is suitable for mobile phone applications. Mobile-

Net has three versions. Each of them is an enhancement of 

the previous version. 

3.1. Background 
Classification of the cultural heritage items utilizing deep 
learning has been proved effective. The researchers have inve-

stigated the capability of diverse DNN architectures, including 
Inception V3, AlexNet, ResNet, and Inception-ResNet-v2, for 
classifying architectural heritage images [6], Indian monu-
ments [30], and Mexican architectural styles [32]. Specifically, 

it has been found that fine-tuning of pre-trained models such 

as VGG19, Inception-V3, Xception, ResNet50, etc. are part-

icularly well suited to art classification [33]. Further, CNNs 

and RNNs have been effectively employed in classifying 

various formats of Indonesian cultural heritage [37]. 

3.2. The proposed models 
3.2.1. MobileNet 
MobileNet V1 is an enhancement for CNN, such that as 
shown in fig (3-a) it divides the standard CNN into two con-
volutions which are depthwise convolution and 1×1 pointwise 
convolution. As fig (3-b) shows, the depthwise convolution 
works as a filter for each input channel; then the pointwise con-
volution combines the output of the depthwise convolutions 
as shown in fig (3-c). This will lead to a decrease in the model 
size and computation size [39]. MobileNet V2 uses inverted 
residual and linear bottleneck along with depthwise convolution. 
As fig (3-d). Figure fig (4-a & b) show, instead of having the 
skip connection followed by compression to the input before 
passing it to the layers then it is expanded in the output with 
the same size as the input, an inverted residual is used which 
the skip connection is followed by an expansion to the input 
then passing to the layers and then it is squeezed in the output 
to be the same size as the input. The inverted residual is used 
to pass gradients across the layers. To prevent losing data in 
low-dimensional space due to non-linear layers, linear bott-
lenecks are inserted. The linear bottleneck is a 1×1 convol-
ution with linear activation. As shown in fig (4-c) using 
linear bottlenecks has higher performance than non-linear 
bottlenecks [40,41]. 
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Figure (3) a. standard convolution [39], b. depthwise convolution [39], c. 

pointwise convolution [39] 
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Figure (4) a. residual blocks [40], b. inverted residual blocks [40], c. linear 

and non-linear bottlenecks performance [40] 
 

MobileNet V3 uses Network Architecture Search (NAS) for 

optimization by finding the best architecture then NetAdapt 

is used for fine-tuning each layer. NAS to find the best archi-

tecture, uses reinforcement learning to hierarchal search in a 

constructed search space for the neural network architecture 

with MnasNet-A1 as an initial model. Then, the NetAdapt 

algorithm starts with a seed network architecture provided 

by NAS, then, in each step, it generates a group of proposals 

each of them is a modification for the architecture, and each 

of them enhances the latency of the previous step, then using 

the model trained in the previous step, a new architecture is 

proposed then evaluated to select the best one. The RELU 

activation function is replaced by the swish function. Because 

of the usage of the swish function to a lot of computational 

resources, RELU6 is used to approximate the sigmoid function 

producing an approximation called h-swish [41, 42]. 

                 swish(x) = x . σ (x) (1) 

                                 -                               (2) 

 
MobileNet-V3 represents a significant advancement in neural 
network architecture tailored for mobile and embedded sys-

tems. With a compact size of 15.3 MB and notable accuracy 
achievements, MobileNet-V3 emphasizes efficiency without 
compromising performance. It achieves this through depthwise 
separable convolutions and inverted residuals, which reduce 
computational complexity by minimizing parameters and oper-

ations. This design choice not only optimizes resource utilization 
but also enhances speed and memory efficiency, making Mobile 
Net-V3 ideal for deployment in environments with limited 

computational resources. Comparative evaluations against 
other lightweight models like ShuffleNet-v2 and Efficient- 
Net-b0 highlight MobileNet-V3's competitive edge in balan-
cing size, computational efficiency, and accuracy, reaffirming 
its suitability for a wide range of practical applications on 
mobile platforms [50-53]. Compared to heavier models like 

Inception-ResNet-v2 used in [6], Inception V3 in [30], Goog-
LeNet and AlexNet in [32], VGG19 and Xception in [33], 
MobileNet V3, with its lightweight and efficient design, is 
suitable for mobile applications, offering a practical trade-off 
between performance and computational demands. Addition-

ally, no previous work has specifically focused on classifying 
Egyptian artifacts' materials, highlighting the novelty and 
importance of our study. 

3.2.2. ResNet 50 
In this work, we use ResNet-50, a deep-CNN architecture 

for cultural heritage recognition. The ResNet-50 architecture 

has become a strong example to show that deep networks 

can be trained with residual learning and solve the lowering 

accuracy problem in deep-CNN architectures [43]. Also, 

Resnet50 architecture is used due to the limited resources to 

train our model making the pre-trained weights important 

[44]. One of the variants of ResNet (a convolutional neural 

network) is ResNet50 which has 50 layers. Its layers consist 

of 48 Convolution layers, 1 MaxPool, and 1 Average Pool layer. 

The architecture of ResNet50 is shown in detail in fig (5-a). 

The problem of vanishing gradient (The vanishing gradient 

problem happens when there are more layers in the network, 

the value of the product of derivative decreases until at some 

point the partial derivative of the loss function approaches 

a value close to zero, and the partial derivative vanishes [45]) 

is solved by ResNet which is based on the deep residual 
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learning framework even with extremely deep neural networks. 

Regardless of ResNet50 having 50 layers, it has over 23 

million trainable parameters which is much smaller than the 
other existing architectures. The explanation of how ResNet50 

works is still being discussed so to understand how it works 

we have to understand how residual blocks work. Let’s say 

that we want to know the true distribution H(x) considering 

a neural network block whose input is x. let’s demonstrate 

the difference (residual) between these: 

R(x) = Output − Input = H(x) − x 

Rearranging it we get: 

H(x) = R(x) + x 

The residual block is trying to learn the true output which is 
H(x). Taking a closer look at fig (5-b), we notice that the layers 
are learning the residual which is R(x) due to having an identity 
connection coming due to x, while in a traditional network, 
the layers learn the true output which is H(x). Learning the 
residual of the output and input rather than the input only is 
observed to be easier. Hence the previous layers are skipped 
allowing the reuse of activation functions by the identity model, 
adding no more complexity to the architecture [46]. The com-
plexity analysis of ResNet-50 reveals its high computational 
demands due to its deep architecture and over 23 million 
parameters. Despite this, ResNet-50 addresses the vanishing 
gradient problem effectively through residual learning with 
residual blocks, focusing on learning residual mappings ins-
tead of full mappings. This approach enhances training sta-
bility and efficiency while optimizing computational resources 
without sacrificing accuracy. The model's complexity is also 
influenced by input resolution, where higher resolutions inc-
rease computational requirements across the network [54]. 
ResNet-50's advantages include reliability, as it is a well-
established architecture extensively used in various computer 
vision tasks compared to models like Inception-ResNet-v2 
used in [6], Inception V3 in [30], GoogLeNet and AlexNet in 
[32], VGG19 and Xception in [33]. It offers better performa-

nce due to its deep architecture capable of capturing complex 
patterns and features. Additionally, ResNet-50 is relatively 
efficient in terms of computational resources, making it suitable 
for deployment across diverse hardware platforms, including 
low-power devices like smartphones and embedded syst-
ems [55]. 
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Figure (5) a. ResNet-50 architecture [47], b. residual learning block [48] 
 

3.2.3. Models training 
For the first approach we used the MobileNet V3 pre-trained 

model, the model's input layer accepts images of size 224× 

224 pixels with 3 color channels. From MobileNet, the archi-

tecture extracts features from a layer situated six layers before 

the final output layer then, a dense layer is added on top, 
configured with 8 units corresponding to the number of classes 
in the dataset. This dense layer uses softmax activation to 
produce class probabilities. During training, all layers except 
the final 15 are frozen to preserve MobileNet's learned features 

while reducing trainable parameters. The model is compiled 
using the Adam optimizer with a learning rate of 0.00001 and 
optimized for sparse categorical cross-entropy loss. Training 

includes early stopping to prevent overfitting, and it utilizes 

a batch size of 7. The execution GPU time for the entire 

dataset ranges from about 2 to 3 hours. For the second app-

roach we employed a fine-tuned ResNet50 convolutional 
neural network. ResNet50 model is the base model. Its initial 
layers, including convolutional and pooling layers, are frozen 
to retain the learned feature extraction capabilities from Image- 

Net. On top of ResNet50, we added a Global Average Pooling 

layer to reduce the spatial dimensions of the feature maps 
followed by a dense layer with 1024 units and ReLU activation 

to capture more features. The final layer consists of a dense 

softmax layer with a number of units equal to the classes in 

our dataset. During training, the model is compiled using the 

Adam optimizer with a learning rate of 0.00001 and applied 
categorical cross-entropy loss. Training includes early stopping 

to prevent overfitting, and it utilizes a batch size of 7. The 

execution GPU time for the entire dataset ranges from about 

3 to 4 hours. The values of the training parameters like batch 

sizes and learning rates used for MobileNet V3 and ResNet-

50 reflects considerations tailored to each model's architecture 

and computational demands. MobileNet V3, recognized for 

its efficiency in computational resources, benefits from a 

smaller batch size of 7, ensuring efficient memory utilization 

and stable parameter updates during training. This batch size 

strikes a balance between computational efficiency and model 

convergence. Similarly, ResNet-50, despite its deeper and 

more complex structure, also uses a batch size of 7, leveraging 

optimizations that accommodate this size effectively. Both 

models employ a learning rate of 0.00001 to fine-tune their 

pre-trained weights gradually. These parameters have been 

selected based on empirical testing and have consistently 

demonstrated optimal results in balancing model perform-

ance and training efficiency. 

3.2.4. Dataset 
The tangible ancient Egypt heritage is rich with various 
items including monuments, sculptures, furniture, accessories, 
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and many others. These varieties in the existing artifacts are 
due to the abundance of materials and minerals that are found 
in the fertile land of Egypt. The Global Egyptian Museum 
(GEM) is a long-term project, carried out under the aegis of 
the International Committee for Egyptology (CIPEG), provides 
a website [49] which aims to collect the cultural heritage items 
of ancient Egypt into a global virtual museum. This website 
can be freely accessed at any time and from any place which 
gives more accessibility to a wide range of items. The website 
allows two browsing modes: basic and advanced. The advanced 
mode permits looking for images of specific items according 
to category, material, date, archaeological site, ancient god, 
historical king, and present location. In this approach, eight 
materials were chosen to be fed to MobileNet for recognition 
and classification. The materials are bronze, clay, limestone, 
wood, faience, pottery, granite, and gold. The reasons behind 
selecting these materials in specific are their originality, ess-
entiality, importance, and popularity in the Egyptian cultural 
heritage. The material types along with the corresponding 
number of collected images in each are listed in tab. (1) while 
samples from the used images are shown in fig (6). From each 
of these material classes, 80 images were randomly selected 
for validation and another 160 images for testing. The data 
preprocessing steps implemented involve several key processes 
to ensure the effectiveness of the training process. The dataset 
is organized into separate directories for training, validation, 
and testing sets, with ratios of 81%, 9.5%, and 9.5%, resp-
ectively. Data augmentation is then applied, which includes 
random horizontal and vertical flipping, as well as random 
rotations, to artificially diversify the training images and enhance 
model generalization. Images are resized to a uniform size of 
224×224 pixels. Additionally, feature-wise standard normaliz-
ation is applied to further normalize the input data. Throughout 
these steps, file operations ensure that images are correctly 
formatted and organized within their respective directories. 
 

Table (1) the number of images in each class of the used data. 

Material Total number of images 

Bronze 655 

Clay 467 

Limestone 856 

Wood 659 

Faience 1220 

Pottery 1086 

Granite 879 

Gold 805 

 

     a (Bronze)               b (Clay)            c (Limestone)           d (Wood) 

 

 

 

 
 
 
 

    e (Faience)              f (Pottery)              g (Granite)             h (Gold) 

 

 

 

 

 

 
Figure (6) sample images from the used dataset [49]. 

4. Results 
4.1. MobileNet V3 training results 
The model has been trained for 50 epochs. Accuracy is the 
main used metric as the model is used in classification. Figure 

(7-a) shows the changes in the training and validation accuracy 

in each epoch having the training accuracy of 99.6 % with vali-
dation accuracy equals 78.75 %. Figure (7-b) shows the changes 
in the training and validation loss which has 0.082 for the training 

loss and 0.788 for the validation loss. The confusion matrix 

shown in fig (7-c) was the output of testing the model using 

the testing set. It shows how the model performs in each 

class. The model best predicts class 6 which predicted 148 

out of 160 images, and the least correctly predicted class is 

class 3 which predicted 93 out of 160 images. The model has 

been tested using the images in fig (7-d) which are from the 

prehistoric periods [49] and they were correctly classified 

such that fig (8-a) was classified as Limestone and the other 

images in fig (8) were classified as Pottery. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (7) a. training and validation accuracy, b. training and validation loss, 
c. confusion matrix 

 

 a (Limestone)           b (Pottery)             c (Pottery)              d (Pottery)               

 

 

 

 
 
 

Figure (8) samples of prehistoric testing images [49] 
 

4.2. ResNet training results 
The model has been trained for 60 epochs. Accuracy is a very 
important part of the model as the model is used in classifica-

tion. Figure (9-a) shows how the training and validation accuracy 

a

0 

b 
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changes in each epoch knowing that the training accuracy 

is 96.62% and the validation accuracy is 83.23%. Figure (9-b) 

shows how the training and validation loss changes in each 
epoch knowing that the training loss is 11.10% and the valida-

tion loss is 73.58%. The validation accuracy of the MobileNet 

V3 model, at 78.75%, lags behind the training accuracy of 
99.6%, while the validation accuracy of the ResNet model, at 

83.23%, also lags behind the training accuracy of 96.62%, 

indicating potential overfitting. This difference suggests the 

models are learning the training data too well, including its 
noise, which hinders their performance on new data. Overfitting 

can stem from the models' complexity and insufficient or un-

varied training data. To address this, several strategies can be 

employed such as using techniques like over sampling, under 

sampling, or a combination of both, to balance the class distr-

ibution and ensure that each class has the same number of 

samples, and applying regularization techniques like dropout 

or L2 regularization which can further help the models gen-

eralize better to unseen data, thereby improving validation 

accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (9) a. training and validation accuracy, b. training and validation loss 

 

5. Discussion 
Using machine learning models to recognize and classify 

heritage items can be reliable, especially if these models are 

trained on a sufficient dataset with precise separation between 

the data classes. In this work, MobileNet V3 and ResNet-50 

were used as lightweight architectures to be compatible with 

real-time operation on mobiles. After working on the training 

strategy, models for classifying cultural heritage items accor-

ding to seven different categories and eight different materials. 

This was challenging due to the wide range of features found 

in the classes of the dataset images. However, after different 

trials and experiments, we achieved robust, high-performance 

models that can be used in real-time. The results show that 

the MobileNet V3 and ResNet-50 models can classify the 

items of the images of the artifacts according to the materials 

sufficiently with high accuracy exceeding 96%. Both models’ 

curves showed more uniform training without fluctuation 

when the model was trained in 8 different classes for 50 epochs. 

However, the validation accuracy still needs improvement 

to achieve better performance. Increasing the number of 

epochs can be a good idea. Yet, the plots show relatively high 

saturation in the epochs, giving the intuition that increasing 

the number of epochs will not significantly improve the vali-

dation accuracy. Accordingly, increasing the data is more 

adequate to be tried. So, this is the future work of this paper: 

to increase the size of the dataset. 

 

6. Conclusion 
MobileNet has three versions. Each version is an enhancement of 

the precedence one. MobileNet V1 is an enhancement for the Conv-

olution neural network as it uses depthwise and pointwise convolution. 

MobileNet V2 is an enhancement of V1 as it uses inverted residual 

and linear bottleneck. MobileNet V3 uses Network Architecture Search 

and NetAdapt as well as the swish activation function for optim-

ization. ResNet-50 is a deep network that has 50 layers. The deeper 

the network the better for neural networks but that makes these net-

works harder to train but the structure of ResNet50 makes training 

of net-works much easier and allows them to be much deeper, as a 

result, the performance in different tasks becomes more efficient. 

The model has been trained on a dataset consisting of 8 classes ach-

ieving 99.6%, 78.75%, 99%, and 80% for the training and validation 

of MobileNet-V3 and ResNet-50 respectively. 
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